
DOI 10.1140/epja/i2005-10192-1

Eur. Phys. J. A 27, 99–103 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

Perturbation theory for isotropic velocity-dependent potentials:
Bound-states case

M.I. Jaghouba

Hashemite University, P.O. Box 150459, Zarka 13115, Jordan

Received: 20 October 2005 / Revised version: 10 January 2006 /
Published online: 23 January 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
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Abstract. Starting from the time-independent Schrödinger equation we develop formulae for the changes
in the bound-state energies in the presence of an isotropic, velocity-dependent perturbing potential. The
corresponding changes in the wave functions are also obtained. Unlike the case of the standard perturbation
theory, determination of the changes in the energy and the wave function of a state only requires knowledge
of the unperturbed ground-state wave function in addition to the perturbing potential. Evaluations of the
energy changes and the corresponding wave functions are given for two examples in the s-wave case.
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1 Introduction

Approximation methods are vitally important tools in the
theory of quantum mechanics. This is so as there are rel-
atively few interesting physical problems that are exactly
solvable. Although numerical solutions can be obtained
to high accuracy, having an analytical formula gives more
physical insight into the problem at hand. The standard
perturbation theory estimates the changes in the bound-
state energies and the corresponding wave functions when
small perturbations in the local potential are introduced.
In doing so, the theory makes use of the orthogonality
of different wave functions. A well-known feature of the
theory is that the second-order energy correction involves
sums over the spectrum of wave functions of the corre-
sponding unperturbed problem [1].

In this work the Schrödinger equation with a velocity-
dependent potential will be considered. Our aim is to de-
velop formulae for the changes in the bound-state energies
and the corresponding wave functions due to the presence
of an isotropic, velocity-dependent perturbing potential.
It will be shown that the changes are determined to any
order and neither the unperturbed energy spectrum nor
the excited-state wave functions are needed. Only knowl-
edge of the unperturbed ground-state wave function, as
well as the purturbing potential, are required. This is in
contrast with the standard perturbation theory, where the
second-order perturbation correction involves sums over
intermediate states.
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An Isotropic velocity-dependent potential may be ex-
pressed in the form

∇ · [f(r)∇ψ(~r )] = f(r)∇2ψ(~r ) +∇f(r) · ∇ψ(~r ), (1)

where ψ(~r ) is a three-dimensional wave function and f(r)
is an isotropic function of the radial variable r. The first
term on the right is essentially a kinetic energy term and
hence the name velocity-dependent potential, which com-
bines with the kinetic energy term in the Schrödinger
equation. Such a potential was derived by Kisslinger [2]
and correctly predicted the predominantly p-wave nature
of the pion-nucleon scattering. The isotropic function f(r)
may be taken to represent the nuclear density. Conse-
quently, the second term in eq. (1) is sensitive to the diffuse
edge in nuclei which is most important in light ones.

In the presence of the above velocity-dependent po-
tential the s-wave, time-independent Schrödinger equation
for a particle of mass m and energy E moving in a given
isotropic local potential U(r) may be written as

[−h̄2

2m
{(1−f(r))∇2−∇f(r) · ∇}+ U(r)

]

ψ(~r ) = Eψ(~r ).

(2)
In terms of the reduced wave function u(r) = rR(r), where
R(r) is the radial wave function, the time-independent,
s-wave radial Schrödinger equation including the velocity-
dependent term takes the form

(1− f(r))u′′(r)−
[

u′(r)− u(r)

r

]

f ′(r) = [U(r)− E]u(r),

(3)
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where E and U(r) are measured in units of h̄2/2m. The
derivative with respect to the radial variable r is indicated
by a prime.

In the absence of a velocity-dependent term, Bender
developed a form of perturbation theory when a local per-
turbing potential is introduced. The changes in the energy
and wave function of a state are obtained without requir-
ing knowledge of the full spectrum of wave functions of the
unperturbed problem [3]. He normalized the wave func-
tions such that they vanish at an arbitrary radius a. How-
ever, we choose a different normalization such that each
wave function correction is orthogonal to the unperturbed
ground-state wave function. As will be seen, this simplifies
the derived expressions for the changes in the energies.

It is worth noting that the Schrödinger equation with a
non-constant term by the second-order derivative has been
the interest of important recent works. Such an equation
has been proposed to describe particles with a position-
dependent effective mass [4]. Furthermore, since the mass
is position dependent it does not commute with the mo-
mentum operator, which leads to an ordering ambiguity of
the operators involved in the Schrödinger equation. This
results in different ways of constructing the Schrödinger
equations for particles endowed with position-dependent
effective mass. Different ordering possibilities have been
investigated in detail in [5].

In an earlier work [6] we derived formulae for the en-
ergy and wave function changes starting from the prob-
ability density equation in the presence of a velocity-
dependent term. The corrections were given up to second
order only and no general form was possible to deduce.
However, the expressions derived here are simpler, easier
to evaluate and given to all orders.

2 Perturbation theory

We shall treat the velocity-dependent potential as a per-
turbing potential. Consequently, when f(r) = 0 eq. (3)
reduces to

u′′
0
(r) = [U(r)−E0]u0(r), (4)

where the unperturbed ground-state energy E0 and wave
function u0(r) are assumed to be known. Now consider
the expansions

u(r) = u0(r) + λu1(r) + λ2u2(r) + . . . , (5)

E = E0 + λE1 + λ2E2 + . . . , (6)

and set
f(r) = λρ(r), (7)

where λ is a real expansion coefficient such that 0 ≤ λ ≤ 1.
When λ = 0 then the perturbation is switched off.

Substituting eqs. (5) to (7) in (3) and equating the
coefficients of λ0 results in the unperturbed Scrödinger
equation given in eq. (4). For n ≥ 1 equating the coeffi-
cients of λn leads to the general expression

u′′nu0−u′′0un−u0

d

dr
(ρu′n−1

)+
ρ′

r
u0un−1=−

n
∑

k=1

Eku0un−k,

(8)

where we have substituted for U(r)−E0 using the unper-
turbed equation given in (4) and multiplied by u0. Further,
we have suppressed the dependence on the radial variable
r for clarity.

2.1 First-order energy correction

To get the first-order energy correction we equate the co-
efficients of λ by setting n = 1 in (8):

u′′
1
u0 − u′′0u1 − u0

d

dr
(ρu′

0
) +

ρ′

r
u2

0
= −E1u

2

0
. (9)

The last equation may be rearranged as

d

dr
(u′

1
u0 − u′0u1)− u0

d

dr
(ρu′

0
) +

ρ′

r
u2

0
= −E1u

2

0
. (10)

The unperturbed wave function u0 represents a bound
state hence it vanishes both at the origin and at infinity.
In addition, it must be normalized to unity, that is

∫

∞

0

u2

0
dr = 1. (11)

Further, since u(r) on the left-hand side of eq. (5) repre-
sents a bound state, then each wave function correction
on the right must also vanish at r = 0 and at infinity.
Integrating eq. (10) from zero to infinity leads to the first-
order energy correction, namely

E1 = −
∫

∞

0

u′
0
ρ u′

0
dr −

∫

∞

0

ρ′

r
u2

0
dr . (12)

It is worth noting that the energy correction E1 depends
not only on the form of ρ but also on its derivative with
respect to the radial variable r. This, for example, high-
lights the importance of the diffuse edge in nuclei. As r
approaches zero we have u0 ∼ r in the s-wave case. Conse-
quently, for the integrals in the last equation to be conver-
gent, then in the vicinity of the origin, ρ(r) must behave
like rp where p ≥ 0. More details on the behaviour of ρ(r)
are found in [7,8].

2.2 First-order correction for the wave function

To obtain the first-order correction for the wave function
we start with eq. (10) and integrate form the origin to r,
which leads to

d

dr

(

u1

u0

)

=
1

u2

0

∫ r

0

{

u0

d

dr′
(ρu′

0
)− ρ′

r′
u2

0
− E1u

2

0

}

dr′,

(13)
where we have used the fact that both u0 and u1 vanish
at the origin. Integrating once again with respect to r we
get

u1 = u0

∫ r

0

dr′

u2

0

∫ r′

0

{

u0

d

dr′′
(ρu′

0
)− ρ′

r′′
u2

0
− E1u

2

0

}

dr′′

+C1u0 (14)
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with C1 being an integration constant. We shall construct
the wave function corrections such that each is orthogonal
to the unperturbed ground-state wave function u0. Hence,
we impose the condition

∫

∞

0

u0 un dr = δ0,n . (15)

In the next section, it will be seen that this condition will
simplify the expressions for the higher-order energy cor-
rections. To find the constant C1 we multiply eq. (14) by
u0 and then integrate from zero to infinity. According to
eq. (15), the integral on the left-hand side vanishes leaving
us with an expression for C1 given by

C1 =

∫

∞

0

u2

0
dr

∫ r

0

dr′

u2

0

∫ r′

0

{

− u0

d

dr′′
(ρu′

0
)

+
ρ′

r′′
u2

0
+ E1u

2

0

}

dr′′ . (16)

Of course one may choose to solve the differential equa-
tion (9) directly to obtain u1.

2.3 Second- and higher-order energy corrections

In order to determine the second-order energy correction
we start by equating the coefficients of λ2, which according
to eq. (8) may be expressed as follows:

d

dr
(u′

2
u0−u′0u2)−u0

d

dr
(ρu′

1
)+

ρ′

r
u0u1=−E1u0u1−E2u

2

0
.

(17)
Both u0 and u2 vanish at the origin and at infinity. Con-
sequently, integrating from zero to infinity and using the
condition given in eq. (15) leads to the second-order en-
ergy correction, which reads

E2 = −
∫

∞

0

u′
0
ρ u′

1
dr −

∫

∞

0

ρ′

r
u0u1 dr . (18)

It is worth noting that the normalization condition in
eq. (15) made the term containing E1 in eq. (17) vanish,
thus decoupling different energy corrections and simplify-
ing their expression. This will happen for all higher-order
corrections.

Working with the coefficient of λ3 and proceeding in
the same manner as above we arrive at the following ex-
pression for the third energy correction:

E3 = −
∫

∞

0

u′
0
ρ u′

2
dr −

∫

∞

0

ρ′

r
u0u2 dr . (19)

By inspecting the first three energy corrections it is easy to
deduce that a general expression for the n-th order energy
correction is given by

En = −
∫

∞

0

u′
0
ρ u′n−1

dr −
∫

∞

0

ρ′

r
u0 un−1 dr . (20)

2.4 Second- and higher-order corrections for the wave
function

To determine the second-order correction for the wave
function we start by integrating eq. (17) from zero to r
which leads to

d

dr

(

u2

u0

)

=
1

u2

0

∫ r

0

{

u0

d

dr′
(ρu′

1
)− ρ′

r′
u0u1

−E1u0u1 − E2u
2

0

}

dr′. (21)

To arrive at the last result we used the fact that u0 and
u2 vanish at r = 0. Performing an indefinite integration
with respect to r results in

u2 = u0

∫ r

0

dr′

u2

0

∫ r′

0

{

u0

d

dr′′
(ρu′

1
)− ρ′

r′′
u0u1

−E1u0u1 − E2u
2

0

}

dr′′ + C2u0, (22)

where C2 is an integration constant that may be deter-
mined by using the normalization condition in eq. (15).
Hence multiplying the above equation by u0 and integrat-
ing over all r results in the following expression for the
constant C2:

C2 =

∫

∞

0

u2

0
dr

∫ r

0

dr′

u2

0

∫ r′

0

{

− u0

d

dr′′
(ρu′

1
)

+
ρ′

r′′
u0u1 +

2
∑

k=1

Eku0un−k

}

dr′′. (23)

An expression for the third-order correction for the
wave function can be easily obtained starting from the
coefficient of λ3 and proceeding in the same manner as
above. By inspection a general expression for the n-th or-
der correction is

un = u0

∫ r

0

dr′

u2

0

∫ r′

0

{

u0

d

dr′′
(

ρu′n−1

)

− ρ
′

r′′
u0un−1 −

n
∑

k=1

Eku0un−k

}

dr′′ + Cnu0, (24)

where

Cn =

∫

∞

0

u2

0
dr

∫ r

0

dr′

u2

0

∫ r′

0

{

− u0

d

dr′′
(

ρu′n−1

)

+
ρ′

r′′
u0un−1 +

n
∑

k=1

Eku0un−k

}

dr′′. (25)

It is also possible to obtain the wave function correc-
tion un by directly solving the differential equation ob-
tained by equating the coefficients of λn.
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3 Examples

In order to test the perturbation formulae derived in the
last section we shall consider a particle moving freely in a
box of radius a = 1. The unperturbed Shrödinger equation
for this particle is

u′′
0
(r) = −k2u0(r) , (26)

where u0(r) is the unperturbed ground-state wave func-
tion inside the well given by

u0(r) =
√
2 sin(kr), (27)

and E0 is the corresponding ground-state energy:

E0 = k2 = π2 . (28)

We shall now consider two types of velocity-dependent
perturbing potentials ρ(r) such that the energy eigenval-
ues can be determined exactly and by the perturbation
formulae. The results will then be compared.

3.1 Constant perturbing potential

In this example we define the velocity-dependent potential
as follows:

ρ(r) = ρ0, r < a

= 0, r > a ,
(29)

where ρ0 is a constant. In this case the Shrödinger equa-
tion in (3) reduces to

(1− ρ0)u
′′(r) = −K2u(r), (30)

where
E = K2. (31)

It can be easily shown that the exact energy eigenvalue,
E, is given as

E = (1− ρ0) E0 = E0 − ρ0 E0, (32)

which corresponds to an exact eigenfunction u(r) =

u0(r) =
√
2 sin(kr). Now we calculate the first-order en-

ergy correction E1 using eq. (12) with ρ(r) = ρ0. This
leads to

E1 = −ρ0 E0 . (33)

Using the expression for the first-order wave function cor-
rection given in eq. (14) shows that u1 = 0. Consequently,
we have

En = 0, n ≥ 2 (34)

and
un = 0, n ≥ 1 (35)

and hence according to eqs. (5) and (6) the perturbation
theory results are

u(r) = u0(r) =
√
2 sin(kr) (36)

and
E = E0 − ρ0 E0. (37)

Clearly, the results of the developed perturbation expres-
sions are identical with the exactly obtained ones.

0.2 0.4 0.6 0.8 1
r

-0.5

0

0.5

1

1.5

u0

u1
u2

Fig. 1. The unperturbed ground-state wave function u0, the
first-order wave function correction u1, and the second-order
wave function correction u2. The wave function corrections
vanish at the origin and at r = a = 1 as expected, where a

is the radius of the spherical well.

3.2 Variable perturbing potential

Here we shall consider a harmonic-oscillator–type perturb-
ing potential defined as

ρ(r) = ρ0r
2, r < a

= 0, r > a .
(38)

Inside the spherical well the exact solution is

u0(r) = 2F1(a, b, c, ρ0r
2), (39)

which is the hypergeometric function. Upon evaluating for
a, b and c we obtain

u0(r) = Dr

[

1− 1

6
E r2 +

1

60ρ0

E(E − 10ρ0) r
4

− 1

840ρ2

0

E(E−10ρ0)(E−28ρ0) r
6+ · · ·

]

, (40)

where D is a constant that can be determined using the
appropriate boundary condition. The above is a solution
with an infinite number of terms unless we terminate the
series by setting one of the factors to zero. We chose
E = 10ρ0, which leads to a wave function defined as

u0(r) = Dr

(

1− 5

3
ρ0r

2

)

. (41)

The constant D can be found by normalizing the wave
function, which must vanish at the origin and at r = a = 1.
For the wave function to vanish at r = 1 then ρ0 = 3/5,
which results in an exact energy eigenvalue E = 10ρ0 =
6 in units of h̄2/2m. Using the derived expressions for
the energy correction given in eqs. (12), (18) and (19) we
obtain in units of h̄2/2m

E1 = −3.4739, E2 = −0.2623, E3 = −0.0791.
(42)

Clearly, the absolute values of the corrections get smaller
as the order of the perturbation increases. Remembering
that E0 = π2, then up to and including the third order in
the perturbation the energy eigenvalue E = 6.0543 which
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is in good agreement with the exact value of 6. The abso-
lute percentage difference is only 0.9%. The corresponding
changes in the wave functions are plotted in fig. 1. Since
the absolute values of the corrections decrease steadily,
then evaluating more terms in the energy expansion se-
ries in eq. (6) is expected to reduce the slight discrepancy
between the approximated and exact energy eigenvalue.

4 Results and discussions

In this work we have derived expressions for the changes
in the energy eigenvalues and the corresponding wave
functions due to the presence of an isotropic, velocity-
dependent perturbing potential. In contrast to the stan-
dard perturbation theory, neither the unperturbed energy
spectrum nor the corresponding unperturbed wave func-
tions are required. To determine the energy and wave func-
tion corrections for a given state only the unperturbed
ground-state wave function and the perturbing potential
are needed. The corrections were given in general and to
all orders in the perturbation. The derived expressions
show that the changes in the energy eigenvalues are sensi-
tive to both the form of the velocity-dependent part and
its gradient. In the field of nuclear physics, for example,
this highlights the importance of a spatially varying nu-
clear density, which is particularly important for light nu-
clei.

In addition to nuclear physics, the Schrödinger equa-
tion with a non-constant term by the second-order deriva-
tive has been used to describe a particle with a spa-
tially varying mass [4]. The derived perturbation results
may also be useful in such models. Further, the spatial
dependence of the mass results in an ordering ambigu-
ity, which in turn leads to different ways of construct-
ing the Schrödinger equation for particles endowed with a
position-dependent effective mass. It is our aim to inves-
tigate the effect of the ordering ambiguity on the above
derived perturbation results in a future work.

To test our results we studied the case of a particle
moving freely in a spherical box of radius 1. The energy
and wave function of the particle were determined exactly
and then by using perturbation theory when a velocity-
dependent perturbing potential was introduced. We

considered two different forms for the perturbing poten-
tial such that the resulting Shrödinger equation can be
solved exactly. The first took ρ(r) to be a constant. In
this case we found E1 = −ρ0E0 and En = 0 for n ≥ 2,
which is identical with the exact solution. In the second
case we considered a spatially varying potential namely
ρ(r) = ρ0r

2, where ρ0 is a constant. We evaluated the first
three energy corrections in the series. Up to and including
the third correction we found E = 6.045 in units of h̄2/2m
in good agreement with the exact result of 6.0 in units of
h̄2/2m. This amounts to an absolute percentage difference
of 0.9%. The absolute magnitudes of the corrections were
found to be monotonically decreasing (E1 = −3.4739,
E2 = −0.2623, E3 = −0.0791) and judging by this, eval-
uation of higher corrections in the series is expected to
remove the slight discrepancy with the exact value.

By using the appropriate change of variables, the
wave equation with a non-constant term by the second-
order derivative may be transformed into an ordinary
Shrödinger equation, but with an energy-dependent po-
tential. Consequently, One may consider deriving pertur-
bation formulae starting from such a transformed equa-
tion.

We have from the start dealt with an s-wave
Schrödinger equation. However, the derived expressions
are equally applicable for higher waves (l > 0) when the
appropriate wave functions are used. This is so as the
centrifugal barrier term may be included within the lo-
cal potential U(r) that does not appear explicitly in the
obtained corrections.
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